x
No Plagiarism!qicySthAgr4Mp0ujvAvrposted on PENANA 恐懼感8964 copyright protection458PENANA8Qtw0nXwZC 維尼
462Please respect copyright.PENANAHWJFwRZYhF
8964 copyright protection458PENANA3kVFRhNdCj 維尼
∫sin(√x+a)e√x√xdx8964 copyright protection458PENANAjl1e3t2Kry 維尼
Substitute u=√x ⟶ dudx=12√x (steps) ⟶ dx=2√xdu:8964 copyright protection458PENANARKmCoNcnHn 維尼
=2∫eusin(u+a)du… or choose an alternative:462Please respect copyright.PENANAU5vbUHc4ZM
Substitute e√x8964 copyright protection458PENANAMXgZ7etbwi 維尼
Now solving:8964 copyright protection458PENANATmHwgsyHuZ 維尼
∫eusin(u+a)du8964 copyright protection458PENANAO7nPpT3v7S 維尼
We will integrate by parts twice in a row: ∫fg′=fg−∫f′g.8964 copyright protection458PENANAKNAVoetXYF 維尼
First time:8964 copyright protection458PENANAScPIsc46pO 維尼
f=sin(u+a),g′=eu8964 copyright protection458PENANArqPRV5ElV1 維尼
↓ steps↓ steps8964 copyright protection458PENANANS4p26INjr 維尼
f′=cos(u+a),g=eu:8964 copyright protection458PENANApS9p9n09fh 維尼
=eusin(u+a)−∫eucos(u+a)du8964 copyright protection458PENANALjiwctKtQM 維尼
Second time:8964 copyright protection458PENANAVGZqubmRr1 維尼
f=cos(u+a),g′=eu8964 copyright protection458PENANABy222XqvnJ 維尼
↓ steps↓ steps8964 copyright protection458PENANALJXm75ASQT 維尼
f′=−sin(u+a),g=eu:8964 copyright protection458PENANAsDnQwTcpit 維尼
=eusin(u+a)−(eucos(u+a)−∫−eusin(u+a)du)8964 copyright protection458PENANAVQt1Apg302 維尼
Apply linearity:8964 copyright protection458PENANA2qLvxAsowH 維尼
=eusin(u+a)−(eucos(u+a)+∫eusin(u+a)du)8964 copyright protection458PENANAXSeXXfFNvV 維尼
The integral ∫eusin(u+a)du appears again on the right side of the equation, we can solve for it:8964 copyright protection458PENANAGMEhpzE3VO 維尼
=eusin(u+a)−eucos(u+a)28964 copyright protection458PENANAgrXHWCL45t 維尼
Plug in solved integrals:8964 copyright protection458PENANAKXAypI3ufA 維尼
2∫eusin(u+a)du=eusin(u+a)−eucos(u+a)8964 copyright protection458PENANADFiXXR42Ds 維尼
Undo substitution u=√x:8964 copyright protection458PENANA6jNEECugHI 維尼
=sin(√x+a)e√x−cos(√x+a)e√x8964 copyright protection458PENANArdZHs30Umy 維尼
The problem is solved:8964 copyright protection458PENANAv5LbrIrLrk 維尼
∫sin(√x+a)e√x√xdx=sin(√x+a)e√x−cos(√x+a)e√x+C8964 copyright protection458PENANAHAUL4cMfmj 維尼
Rewrite/simplify:8964 copyright protection458PENANAORJ4T9KPyS 維尼
=(sin(√x+a)−cos(√x+a))e√x+C8964 copyright protection458PENANAdjHyLtNHY9 維尼
3.15.0.42
ns3.15.0.42da2